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An algorithm is presented to identify model parameters in grey-box models. The solver is

convex, so the global optimum is guaranteed. The method is applied to estimate bulk

transfer coefficients in greenhouses from easily monitored data. This model covers the

most important processes, such as conduction losses to the environment, heat exchange

with neighbouring compartments, heating from the sun and lighting installations, and

ventilation losses. Screen positions are also included in the model. Each process is para-

meterised, so that the specific situation of each greenhouse can be identified. Greenhouse

experiments are often repeated in the same greenhouse or performed in parallel. If some

model parameters are assumed to remain identical in these experiments, this can be

incorporated in the optimiser making it more robust. The estimator is exemplified using

measurements from two compartments in a greenhouse; one equipped with LED lighting,

the other equipped with HPS lighting. It showed that effective conduction parameters for

the greenhouse and screens were similar to values found in literature (5.8 and 5Wm�2 K�1,

respectively). The model also predicted that both lighting systems provide the same

amount of sensible heat at the height of the plants, despite the HPS system consuming 43%

more energy. A vertical temperature measurement confirmed that both lighting systems

produced the same amount of heat at the height of the plants. The LED system dispersed

heat more evenly over height, while the HPS system heated the upper layers more.

© 2020 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
ore.be (F. De Ridder), jeroen.vanroy@thomasmore.be (J. van Roy), Wendy.Vanlommel@
alenberge@proefstation.be (B. Van Calenberge), maarten.vliex@botany.nl (M. Vliex), jonas.
ert.deschutter@thomasmore.be (B. De Schutter), simon.binnemans@thomasmore.be
re.be (M. De Pauw).
.12.009
Elsevier Ltd on behalf of IAgrE. This is an open access article under the CC BY-NC-ND license
nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fjo.deridder@thomasmore.be
mailto:jeroen.vanroy@thomasmore.be
mailto:Wendy.Vanlommel@proefcentrum.be
mailto:Wendy.Vanlommel@proefcentrum.be
mailto:bart.van.calenberge@proefstation.be
mailto:maarten.vliex@botany.nl
mailto:jonas.de.win@proefstation.be
mailto:jonas.de.win@proefstation.be
mailto:bert.deschutter@thomasmore.be
mailto:simon.binnemans@thomasmore.be
mailto:margot.depauw@thomasmore.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystemseng.2019.12.009&domain=pdf
www.elsevier.com/locate/issn/15375110
www.elsevier.com/locate/issn/15375110
https://doi.org/10.1016/j.biosystemseng.2019.12.009
https://doi.org/10.1016/j.biosystemseng.2019.12.009
https://doi.org/10.1016/j.biosystemseng.2019.12.009
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nomenclature

Indices and sets

j2f1;…; Jg Integer, Neighbour index, with J the total

number of neighbours

i2f1;…;Mg Integer, Heat source/sink index, with M the

total number of sources/sinks

t2f1;…;Ng Integer, Sample index, with N the total

number of samples

kεU Integer, Index indicating the common

parameters, with U the subset of common

parameters

U4f1;…;Kg Set of integers, Subset of common

parameters

Symbols

at m3 m�2 h�1, Ventilation rate

ε
obs
t �, Observed external variable

Dt h, Sample period

dscreent Binary, Screen position

dventt Binary, Window position

q �, Model parameters

llk �, Lagrange multiplier

r �, Update parameter for Lagrange multiplier

cexterior
t kg m�3, Absolute humidity outside the

greenhouse

cobs
t kg m�3, Absolute humidity inside the

greenhouse

cp kWh kg�1 K�1, Specific heat capacity of fluid in

heating system

L kWh kg�1, Latent evaporation heat of water
_mt m3 h�1, Flow rate of heating system

c kWh K�1, Heat capacity

Plightt kW, Electric power used by the lamps

PSunt kW m�2, Power delivered by sun

Qi W m�2, Heat for process i

Qi;obs
tþ1=2 W m�2, Observed heat for process i

Sground m2, Common surface with environment

Sneighbor j m2, Common surface with neighbour j

Texterior
t K, Observed exterior temperature

ðTin
t � Tout

t Þ K, Temperature difference between

incoming and outgoing water in heating

system

Tmodel
t K, Modelled temperature

Tneighbor j
t K, Observed temperature of neighbour j

Tobs
t K, Observed interior temperature

V m3, Volume of the compartment
bx �, Estimated value for variable x
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1. Introduction and objective

Greenhouse horticulture is an important component of the

European agriculture, with substantial land areas covered

with greenhouses, with around 178,000 ha in the European

Union (Stanghellini, van’t Ooster, & Heuvelink, 2019). Plants

and crops are grown in greenhouses all year round, which
makes greenhouse horticulture energy intensive. In North-

Western Europe, natural lighting is insufficient to optimise

plant and crop growth during the winter months (Geelen,

Voogt, & van Weel, 2018). Therefore, artificial lighting is

used. Traditionally, high pressure sodium (HPS) lamps have

been used, since these are relatively cheap to produce and

maintain. Recently Light-Emitting Diodes (LEDs) have been

used to supplement existing HPS lamps to increase produc-

tion, but in some greenhouses they have replaced HPS lamps

entirely. LEDs produce monochromatic light, so a larger frac-

tion of the light produced can be useful for plants. It is

generally known that LEDs are more efficient, and thus pro-

duce less heat. However this also affects humidity, or more

precisely the absolute moisture deficit, and therefore it also

influences ventilation in the greenhouse.

In order to quantify the impact of the lighting in-

stallations on the climatic conditions in a greenhouse,

comparative experiments are required. Such comparisons

should be carried out under similar conditions. This can be

achieved by using the same greenhouse and altering the

applied artificial lighting consecutively. In this case, envi-

ronmental conditions, such as outside air temperature, wind

speed and direction, sun light, etc. will perturb the experi-

ment. It may very well be possible that the influence these

uncontrolled factors is far larger than the difference between

the lighting installations. An alternative approach is to

conduct the experiments in two similar compartments at the

same time, so that environmental conditions are identical.

However, the internal temperatures may differ, due to

different heating conditions, different states of the plants

and different humidity, inducing different ventilation rates.

Again, these differences may cause greater deviations than

the lighting installation itself.

One way to separate the influence of lighting installations

from all other heat sources and sinks is to use a model that

quantifies all important processes in each compartment. Dif-

ferences in heating, losses to neighbouring compartments can

be corrected for, so that those quantities of interest are iso-

lated and can be compared.

The objective of this paper is to propose a method that can

identify themodel parameters and states of a grey-boxmodel.

This procedure is exemplified on a thermodynamic model for

greenhouses. The model consists of simple parametric pro-

cesses of all main heat flows and takes ventilation into ac-

count. The estimator is based on a solver for convex problems

and this is exemplified by an experiment where LED and HPS

lamps are compared.

It should be noted that themethods discussed in this paper

follow the philosophy of data-driven-modelling. The models

are a means to holding a dialogue with nature and to extract

useful information from noisy measurements. As a conse-

quence, model complexity is dictated by the quality of the

observations made.

1.1. Literature review

Here three different types of models that are often used to

model greenhouses are described. This is followed by an

overview of parameter estimation techniques.

https://doi.org/10.1016/j.biosystemseng.2019.12.009
https://doi.org/10.1016/j.biosystemseng.2019.12.009
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1.1.1. Models
The first group of models reviewed are white-box models.

These use only physical parameters from principal physical

experiments. These models are used more often when the

number of internal states is large, such as in computational

fluid dynamics (CFD) models (Boulard, Haxaire, Lamrani, Roy,

& Jaffrin, 1999; Nebbali, Roy, & Boulard, 2012; Torreggiani,

Bonora, Tassinari, Benni, & Barbaresi, 2016; Yang, Chu, Lan,

Tasi, & Wu, 2017). These models provide insight in the phys-

ical processes and are often useful e.g. to simulate the

behaviour under different design choices. These simulations

are faster and cheaper than building and comparing pro-

totypes. However, often, one is interested in estimating the

physical properties from a match of a model on observations.

This is often very difficult to achieve with white-box models.

So, from a practical point of view, white-box models are not

always useful, and thus another type of model was investi-

gated here.

At the end of the spectrum are black-box models. These

seek a relation between input and output data, without trying

to understand this relation (e.g. del Sagrado, S�anchez,

Rodrı́guez, and Berenguel (2016), Frausto, Pieters, and

Deltour (2003); He and Ma (2010); Taki, Ajabshirchi, Ranjbar,

Rohani, and Matloobi (2016)). Such models are no longer

based on physical insights, but purely aim to optimise a pre-

diction. Interpretation of the parameters is no longer appli-

cable, and separation of the physical processes is also no

longer possible. Therefore, such model structures are not

considered here.

A compromise between both models described above are

so-called grey-box models. They are often based on physical

laws, like conservation of energy, and are sometimes called

energy balance models (e.g. Kimball (1973) or van Henten

(1994)). Many applications can be found in literature, such a

Mashonjowa, Ronsse, Milford, and Pieters (2013), Pieters and

Deltour (1997a, b) or Roy, Boulard, Kittas, and Wang (2002).

The advantage of such grey-boxmodels is that the parameters

tell us something about the greenhouse under test and this

can often be identified from a single experiment with a few

sensors. Thus, a grey-box model will be used in this paper.

1.1.2. Estimators

Tomatch amodel based on experimental data, an estimator is

required. For simple models that are linear or convex in their

parameters, parameter estimation is a simple task. However,

nonlinearities often appear in these models. When the model

is not convex, parameter estimation becomes a difficult task.

Parameter estimation methods for such models often have

either a low convergence rate (due to the nonlinear nature of

the estimation problem) or suffer from high computational

burdens (Peifer & Timmer, 2007).

Two approaches to solve this problem can be found in

literature. The first set of solutions improve the search engine.

Guzm�an-Cruz (2013) for example compared a series of esti-

mation techniques to calibrate greenhouse climate models,

like genetic algorithms, evolutionary strategies and evolu-

tionary programming. An alternative comparison, using par-

ticle swarm algorithms and comparing them with genetic

algorithms was given by Yang et al. (2015) and by Akman,
Akman, and Schaefer (2018). Under most conditions such

search algorithms can provide reasonable parameter values,

but one cannot be sure that no better solution exists. In

addition, it might take some time before such algorithms

converge. Overall, these improvements increase the conver-

gence region and rate, but they cannot guarantee that the

optimum found is either the global optimum or just a local

optimum.

In a second set of solutions, a reasonable set of initial

values for the parameters is searched for, so that the optimi-

sation algorithm can start close to a good solution. Strebel

(2013), for example, used the tangent slope and coordinates

of a given solution of the ordinary differential equations at

randomly selected points in time. Ding and Wu (2013) used a

constrained local polynomial regression algorithm to estimate

the unknown parameters with the goal to improve the

smoothing-based two stage pseudo-least square estimate.

Thus, these two papers proposed methods to generate good

starting values, but they could not guarantee delivering the

global optimum.

Peifer and Timmer (2007) propose to use multiple shooting

(Bock & Plitt, 2017) to find a reasonable compromise between

the computational burden of finding a global optimumand the

process getting stuck in a local minimum. In contrast with

single shooting methods, the convergence region of multiple

shooting algorithms is much better. In addition, efficient

solvers are available, so that computational times can be kept

short (Andersson, Gillis, Horn, Rawlings, & Diehl, 2018). Mul-

tiple shooting algorithms, however, are a numerical tech-

nique. If the ordinary differential equations used are

nonlinear in their states, the solution found is still only a local

solution.

In contrast to these papers, a different approach is chosen

here which ensures that themodels used remain convex. This

means that the objective function, that measures the distance

between model and observations, has one single and unique

minimum. So once a solution is found, it is not necessary to

doubt if these parameters are sub-optimal. In addition, very

efficient algorithms exist, which can solve the search problem

in a few seconds. According to our knowledge, none of the

above-mentioned papers were able to propose an algorithm

that can track the global optimum.
2. Case studies: trial set-ups and locations

Two experiments were used in this paper. In the first experi-

ment two compartments were monitored for one month. In

the second experiments, vertical temperature gradients were

measured during night in both compartments.

Each experiment was conducted using two identical com-

partments of a semi-commercial greenhouse, oriented NE-SW

in the Research Station for Vegetable Production, Sint-

Katelijne-Waver, Belgium. (51� North). The first compart-

ment was equipped with LED lamps and the second with HPS

lamps. Throughout this paper the compartments will be

referred to as the LED and HPS compartments, respectively.

Each compartment of the greenhouse was 20 m long and 8 m

wide. The height of the gutter was 6 m; the ridge was about

1 m higher. An schematic overview of the compartments is

https://doi.org/10.1016/j.biosystemseng.2019.12.009
https://doi.org/10.1016/j.biosystemseng.2019.12.009


Table 1 e Surfaces of the greenhouse compartments.

(m2) LED compartment HPS compartment

Common wall 120 120

Environment 208 208

Corridor 48 168

Third compartment 120 0

Ground 160 160
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given in Fig. 1. Each compartment was illuminated by six large

windows (two off 1.25 m � 2.15 m and four off 1.25 m � 2.15).

The compartments had one common wall and have both one

wall adjacent to the exterior environment. The LED

compartment was adjacent to the corridor and to a third

compartment. The HPS compartment was adjacent to the

corridor on two sides. Details of the surfaces are provided in

Table 1. The floor of both compartments was covered with a

plastic film, except in the first few metres adjacent to the

corridor, where the floor consisted of concrete (see Fig. 1). Both

compartments were equipped with thermal screens. The

screens on the roof were Phormitex bright screens (Phor-

mium, Lokeren, Belgium) and the screens at the wall were

Obscura 10,070 R FR W screens (AB Ludvig Svensson, Kinna,

Sweden).

Two separate heating systems were installed in each

compartment. The major system was tube rail and consisted

of a steel pipes with a diameter of 51 mm which was used for

heating and fed by high-temperature water with an inlet

temperature of up to 55 �C. There were two rail pipes per

growing gutter with a length of 17.5 m. A second systems

(designated growing pipes) had steel pipes with the same

diameter but they were located between the plants and used

for heating using low temperature water up to 40 �C. There
were two growing pipes per gutter with a length of 17.5 m but

one of these pipes can be lifted-up.

Both compartments were equipped with 180 mmol m�2 s�1

top-lights. To receive this intensity the LED compartment was
Fig. 1 e Cross section of the greenhouse. The grey colour indicate

ground covered with plastic sheeting.
equipped with 9 Signify DR/B LB GPL top-lights of 190 W each,

18 GreenPower DR/B LB LED top-lights of 190 W each and 33

GreenPower DR/W LB LED top-lights of 195 W (Signify, Eind-

hoven, the Netherlands). TheHPS compartmentwas equipped

with 16 GAN Electronic Gavita HPS lamps of 1035 W each.

Thus, the overall power consumption of each system was

11,565 W for LED lamps and 16,560 W for HPS lamps. The

lighting installations are installed 5.8 m above the floor. The

climate in both compartments was controlled using both

heating systems, opening and closing the windows and

screens and influenced by the use of the lighting systems.

Main parameters used by the climate control unit to realise an

optimal climate were temperature and humidity.

Temperature, relative humidity and carbon dioxide (S-CO2)

fromboth compartments and from the compartment adjacent

to the LED compartment were monitored with a sensor pre-

sent in the middle of each compartment. This logging device

was positioned at the top of the plants, about 1.5 m above the

ground. Temperature, wind direction, wind speed and
s a concrete floor, while the white colour indicates a floor of

https://doi.org/10.1016/j.biosystemseng.2019.12.009
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incoming solar radiation is measured on the roof of the

greenhouse (see outdoor sensors in Fig. 2). Relative humidity

was measured about 1 m above the ground in a nearby field

(seeweather station in Fig. 2). The temperatures of the heating

pipes were measured with thermocouples (MW80) as well as

the flowrate in each pipe. The opening of the windows and

screens was monitored as well. All data were measured at an

interval of 60 s, using a data logging system (HortiMaX mul-

tima, Testo, Ternat, Belgium). Data were collected from

November 1st until November 30t 2018.

Cucumber plants (Cucumis sativus)were sown at 9 October

2018. The seedlings were transplanted on rockwool blocks

(Grodan PlanTop Cube, Grodan, Roermond, The Netherlands).

After 28 days, on 6 November 2018, the rockwool blocks were

transmitted onto the rockwool mats (Grodan Master 0.1 m

width x 1 m length, Grodan, Roermond, The Netherlands).

Substrates were elevated 0.5 m above the ground with a drain

gutter (width 0.31 m). A single-row system was used were

plants are alternately guided to one side of the gutter. Dis-

tance between gutters is 1.6 m and the plant spacing was

250 mm, what resulted in a plant density of 2.5 plants per m2

(one stem per plant). No extra stems were laid during the

season. Plants were grown vertically in the greenhouse until

they reached the support wires (1,5 m under the lamps). From

then on, plants weremoved clockwise around the gutter. Fruit

thinning started alternately from the seventh fruit; one fruit

per two nodes. Trellesing and pruning was carried out several

times per week. The target yield was 7,5 fruits per week per

m2, based on 2,5 plants per m2 x 6 leaves per week x alternate

fruit thinning. Fruit was harvested form 5December 2018 until
Fig. 2 e Greenhouse orientation with positioning of the LED an

station.
4 April 2019. Since plant growth was too generative at mid-

December, fruit thinning was increased to 2:5 fruit:leaf ratio.

There was a significant higher cumulative fruit yield in pieces

(97 fruits m�2) and mass (37 kg m�2) in the HPS compartment

in comparison to the LED compartment (88 fruits m�2 and

33.6 kg m�2).

In the second experiment, vertical temperature data were

measured in both compartments for two nights starting on

May 15th, 2019. At this time, the LED compartment was

empty, whilst cucumber plants were still present in the HPS

compartment. Temperatures were monitored by a Testo data

logger 177-T4 (Testo, Ternat, Belgium) equipped with RS PRO

Type T Thermocouples. The sampling interval was 1 min. A

vertical rope was used to position the temperature sensors

with sensors placed at 500mm above the lighting installation,

at the same height as the installation, and at 500, 1600, 2500,

4000 and 5500 mm below the lighting installation. Experi-

ments were performed at night to avoid the influence of

sunlight on the temperature measurements. The lighting

systems were turned on from 1 AM until 3 AM.
3. Integration scheme

The starting point is a generic scheme consisting of an esti-

mator and model. The estimator is a least square estimator

and the model is an ordinary differential equation. This

scheme has two unknowns: the model parameters grouped in

a vectorq, and the model values Tmodel
t with index t2f1;…;Ng.

This scheme can be notated as
d HPS compartment, the outdoor sensors and the weather

https://doi.org/10.1016/j.biosystemseng.2019.12.009
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hbq; bTmodel

t

i
¼arg min

q;Tmodel
t

XN
t¼1

�
Tobs
t � Tmodel

t

�2

(1)

Subject to

dTmodel

dt
¼ f

�
T; q; εobs

�
(2)

and possibly to other equality and inequality constraints.bq; bTmodel

t are the optimal parameters and model temperatures,

Tobs
t the observed internal temperatures and ε

obs are a set of

external observed variables, like outside temperatures. The

function fðT; q; εobsÞ expresses the rate of change of tempera-

ture and depends on the model parameters, some external

observed variables ε
obs and the state of the system T. The dif-

ferential equation cannot usually be solved analytically, and a

numerical approximation scheme must be used to estimate

the values Tmodel
t . Therefore, a value for T and ε

obs has to be

chosen in order to evaluate fðT; q; εobsÞ. Depending on the

integration method used, this value may change.

One of themost popular and simple integration schemes is

the forward Euler integration scheme (Butcher & Goodwin,

2008)

Tmodel
tþ1 � Tmodel

t

Dt
¼ f

�
Tmodel
t ; q; εobst

�
(3)

where the left-hand side is discretised and the right-hand side

is evaluated in the last known state Tmodel
t . This equation can be

rewritten to calculate the next state

Tmodel
tþ1 ¼Tmodel

t þ f
�
Tmodel
t ; q; εobst

�
Dt (4)

In Eqs (1) and (2), q and Tmodel
t are unknowns. The function

fðTmodel
t ; q; εobst Þ often contains products of both. This makes it a

nonlinear function in these unknowns. Such a nonlinear

constraint requires the use of nonlinear solvers, including all

problems with convergence and local minima.

However, this problem can be circumvented. It should be

noted that interest is not specifically in the evolution of the

temperature, since this evolution is already observed, but is in

the parameters q. Therefore, the rate of change function fðT; q;
ε
obsÞ can be evaluated in Tobs

t . This leads to the following dif-

ference equation (still following the Euler integration scheme):

Tmodel
tþ1 ¼Tmodel

t þ f
�
Tobs
t ; q; εobst

�
Dt (5)

The main advantage of this integration scheme is that the

rate of change function fðTobs
t ; q; εobst Þ no longer contains

products of unknowns. It is only a function of the unknown

parameters q. So, the three unknowns remaining in Eq. (5), i.e.

Tmodel
t , Tmodel

tþ1 and q, no longer appear as products. Therefore,

difference equations such as Eq. (5) can be directly integrated

into solvers for convex problems with affine constraints.

A disadvantage of this integration scheme is that addi-

tional measurement errors are introduced in the function

fðTobs
t ; q; εobst Þby means of both terms Tobs

t and ε
obs
t , instead of

only by the term ε
obs
t . This lowers the precision of the esti-

mator. To lower this impact, it is better to use the mid-point

method (Butcher & Goodwin, 2008), instead of the explicit

Euler integration. This leads to
Tmodel
tþ1 ¼Tmodel

t þ f
�
Tobs
tþ1=2; q; ε

obs
tþ1=2

�
Dt (6)

With

Tobs
tþ1=2 ¼

�
Tobs
t þTobs

tþ1

�.
2 (7)

and

ε
obs
tþ1=2 ¼

�
ε
obs
t þ ε

obs
tþ1

�.
2 (8)

By averaging over two subsequent observations,

measurement error is reduced by a factor
ffiffiffi
2

p
(assuming

normally independent identically distributed measurement

noise).

It should be noted that the current version of this inte-

gration scheme cannot be applied in the following

circumstances.

(i) If not all state variables are observed, the hidden

states cannot be used to evaluate the right-hand side

function.

(ii) It is assumed that the observations are sampled at

the same sampling frequency as the time step in the

difference equation. If the sampling frequency of the

observations is lower than the model time step, ob-

servations should be interpolated. This might cause

an additional interpolation error.
4. Model

This integration scheme was applied on a greenhouse

model. Firstly, the different components of the model are

described. Next, the estimator and solver are discussed and,

finally, the method is expanded so that identical processes

in multiple experiments can be characterised by the same

parameters.

Conservation of energy, in the absence of ventilation, can

be expressed as

c
dTmodel

dt
¼
XM

i¼1
Qi (9)

where c is a heat capacity and the right-hand side summates

over all heat sources and sinks. This differential equation can

be discretised with respect to time

Tmodel
tþ1 ¼Tmodel

t þ 1
c

XM

i¼1
Qi

tþ1=2Dt (10)

This equation shows how temperature will evolve over a

time step Dt from a given temperature Tmodel
t . A series of heat

sources and sinks Qi;obs
tþ1=2 with i2f1;…;Mg are considered and

discussed below.

4.1. Ventilation

Ventilation is now incorporated in this difference equation,

based on the work of van Henten, Bontsema, Kornet, and

Hemming (2006) and de Brauwere et al. (2007): if a fraction of

https://doi.org/10.1016/j.biosystemseng.2019.12.009
https://doi.org/10.1016/j.biosystemseng.2019.12.009
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interior air at, is replaced by environmental air, then the

temperature changes to

Tobs
tþ1 ¼ð1�atÞTobs

t þ atT
exterior
t (11)

By measuring, the interior and exterior states, one can

easily derive the fractions at. Evidently, this fraction is

restricted to

0�at � 1 (12)

If heat sources and sinks are included, the temperature

evolution in the next time step is given by combining Eqs. (10)

and (11):

Tmodel
tþ1 ¼ �

1� dventt

�
Tmodel
t þ dventt

�
ð1�atÞTobs

t þatT
exterior
t

�

þ 1
mc

XM

i¼1
Qi

tDt (13)

With dventt a binary variable (zero if windows are closed and

one if windows are open).

4.2. Conduction losses to the environment

Heat losses to the environment are assumed to be propor-

tional to the temperature difference between the green-

house and the environment (van Henten, 1994). Many

greenhouses are equipped with screens to lower heat losses

during night. The position of these screens is modelled by a

binary parameter dscreent , which is assumed to be known and

can take two values, namely 1: screen closed and 0: screen

open.

Q1
t ¼

�
q1d

screen
t þ q2

�
1� dscreent

���
Tobs
t �Texterior

t

�
Sexterior (14)

Q1
t is the heat exchanged with the environment at time t, q1

(heat losses when screens are closed) and q2 (heat losses when

screens are open) are two unknown parameters, which are

assumed to be constant in time, Tobs
t and Texterior

t are the

observed interior and exterior temperatures, respectively, and

Sexterior is the surface that connects the greenhouse to the open-

air.
4.3. Transmission losses to neighbouring compartments

Heat losses to neighbouring compartments are modelled

similarly. Usually no screens are present between neigh-

bouring compartments, so

Q2
t ¼

XJ

j¼1
q3

�
Tobs
t �Tneighbor j

t

�
Sneighbor j (15)

where Q2
t is the heat exchanged with all neighbours at time t.

Tneighbor j
t is the temperature at neighbour j at time t, with j2

f1;…; Jg and J the number of neighbours, Sneighbor j is

the common surface between the greenhouse compartment

and its neighbour j. For simplicity, it is assumed that the

physical properties of the walls that separate the green-

house from its neighbours are all identical. If this would not

be the case, the parameter q3 should become neighbour

dependent.
4.4. Latent heat

Condensation and evaporation in greenhouses have been

extensively studied (e.g. Pieters and Deltour (1997a) or Pieters

and Deltour (1997b)). In these studies, a model was used to

simulate the effect of condensation and evaporation on the

auxiliary heating requirements, on the inside air humidity

and temperature and on the vegetation temperature. Such

models are impractical for this study, since many states, such

as the soil and roof temperature are usually not observed.

Therefore, heat consumption by evaporation and condensa-

tion can be estimated from changes in the absolute humidity

(g m�3). A distinction is made between the two situations:

(i) When vents are closed, all changes in humiditymust

be related to changes in latent heat and influence the

heat present in the system.

(ii) If vents are open, two processes are taken into

account
a. Changes in internal humidity

b. Humidity exchange with the environment
Q3
t ¼

�
1� dventt

�
Qinternal

t þ dventt

�
ð1�atÞQinternal

t þatQ
external
t

�
(16)

With

Qinternal
t ¼ � LV

Dt

�
cobs
tþ1=2 �cobs

t�1=2

�
(17)

Qexternal
t ¼ � LV

Dt

�
cobs
tþ1=2 �cexterior

t�1=2

�
(18)

And L the latent heat, V the volume of the greenhouse and

Dt the sample period. Qinternal
t is the positive or negative

contribution of changes in humidity inside the greenhouse

compartment, to the internal heat. Note that Eqs. (17) and (18)

are approximations: the humidity cobs
tþ1=2 is a result of internal

evaporation and condensation and of humidity exchangewith

the environment.

4.5. Solar heating

The heat provided by the sun was given by

Q4
t ¼ q4P

Sun
t Sground (19)

With q4unknown parameters that account for the fraction

of heat from the sun that is captured by the greenhouse

compartment. The remaining fraction is scattered or reflected

on the roof or is used to heat neighbouring compartments, PSun
t

represents the intensity of the sun (W m�2).

4.6. Heating system

The model used for the heating system depends on the

available data. If the necessary data are available, the amount

of heat provided by the heating systems can be calculated, e.g.

with
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Q5
t ¼ q5 _mtcp

�
Tin
t �Tout

t

�
(20)

with Tin
t the input temperature of the heating system, Tout

t the

output temperature.

Often greenhouses are equipped with a high and low

temperature heating system. If several heating systems are

present, each heating system should be modelled separately

and described by its unique parameter(s). Obviously, the

parameter q5 should be equal to one.

4.7. Lighting system

The lighting system was modelled as

Q6
t ¼ q6P

light
t (21)

with Plight
t the electric power provided to the lighting system.

The unknown parameter q7 tells which fraction of the electric

power ends up as heat in the greenhouse. If multiple lighting

systems are present, each should be modelled separately and

will be described by its own parameter(s). If shading screens

are present, these could be incorporated similarly to the

thermal screens.

4.8. Parameter estimator

As is pointed out above, estimating the unknown parameters

was carried out by casting this problem as a convex problem

with affine constraints. The problem can be formulated as

follows

hbq; bTmodel

t ; bat

i
¼arg min

q;Tmodel
t ;at

XN

t¼1

�
Tobs
t � Tmodel

t

�2
(22)

Subject to Eqs. (12e21).

This least squares estimator is subject to a set of affine

equality and inequality constraints. Therefore, it is a convex

problem that can be solved very efficiently using e.g. CVX, a

package for specifying and solving convex programs (Grant,

Boyd, & Ye, 2008; Grant & Boyd, 2008).

4.9. Estimation of the mass and heat capacity product

A problem with this model is that the heat capacity c is not

known. If the term c is added to the parameters to be esti-

mated, the problem is no longer solvable. To circumvent this

problem, the ratio q=c can be estimated. Since the parameter

associated with the heating system q5 should be one, the heat

capacity can be identified from the estimate of q5.

cupdate ¼ cguess
�
q5 (23)

This equation can be used to find correct values for the

overall mass and heat capacity of the greenhouse.

4.10. Identical parameters in multiple experiments

If the aim of an experiment is to compare two specific pro-

cesses, while other processes remain identical, it is conve-

nient to combine these multiple experiments. This can for

example be done by repeating an experiment in a greenhouse
or by using two compartments in one greenhouse. The pa-

rameters of the identical processes should remain the same.

In this paragraph, the procedure is expanded so that a set of

parameters can be shared between estimators. Assuming that

a subset of the parameters is identical, U4f1;…;Kg, with K ¼ 6

in this case. This subset is indexed with kεU. This can be

formulated as

qmk ¼ qk (24)

With qmk the parameter k in compartment m and qk the

mean value of parameter k over all compartments. If this

condition is fulfilled, all parameters are equal to their mean

and thus to each other. This common constraint can be

incorporated in the objective function of estimator m, which

becomes

hbqmi ; bTmodel

t ; bat

i
¼arg minbqmi ;Tmodel

t ;at

XN

t¼1

�
Tobs
t � Tmodel

t

�2

þ
X
kεU

lmk
�
qmk � qk

�
(25)

Subject to Eqs. (12e21).

If constraint Eq. (24) is fulfilled, the latter term vanishes.

This objective function is called the Lagrangian and lk is the

Lagrange multiplier. This Lagrange multiplier cannot be cho-

sen arbitrarily but has a unique value. To find this,

the Lagrange multipliers can be initialised as zeros. In

this case, the unconnected cases is solved for each compart-

ment. Next, the mean parameter value can be calculated, and

the Lagrange multipliers can be updated as follows

l
m;lþ1
k ¼ l

m;l
k þ r

�
qmk � qk

�
(26)

With r a small number and l the iteration number. This

scheme can be iterated until lmk has converged. However,

in practice, this may take a while. Therefore, the Lagrangian

is often augmented with a quadratic term, which speeds

up convergence and makes the numerical scheme

more robust (Boyd, 2011). The augmented Lagrangian is

given by

hbqmi ; bTmodel

t ; bat

i
¼arg minbqmi ;Tmodel

t ;at

XN

t¼1

�
Tobs
t � Tmodel

t

�2

þ
X
kεU

lmk
�
qmk � qk

�

þ r

2

X
kεU

�
qmk � qk

�2
(27)

subject to Eqs. (12e21).

This quadratic term also vanishes when the coupling

constraint is met (Eq. 24). This optimisation scheme is based

on the alternating direction method of multipliers (ADMM

(Boyd, 2011)), more particularly on the so-called consensus

algorithm, because all estimators must find a consensus on

the common parameters. In practice, convergence is reached

when the largest difference between the common parameters

is less than 1%.

Note that estimating the heat capacity cwith the procedure

described above can only be combined with this method if the

heat capacity in all compartments is identical. If they differ,

the ratios q=c will differ for each compartment and no

consensus can be found.
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4.11. Evaluation of the model on a test set

Applying the method to a test set, the model needs to be

evaluated while ventilation variables need to be identified. At

the same time, the model parameters q, should remain the

same. This can be achieved by applying the method on the

novel data with one additional constraint

hbTmodel

t ; bat

i
¼arg min

Tmodel
t ;at

XN

t¼1

�
Tobs
t � Tmodel

t

�2
(28)

Subject to Eqs. (12e21) and to q ¼ bq, where bq are the pre-

viously estimated parameters. The two additional terms in the

augmented Lagrangian are fulfilled, so they do not contribute

to the cost function and can be ignored.
Fig. 3 e Measurements and model predictions for the

training set of the LED compartment. The grey lines are

respectively the measured and modelled indoor

temperature and the black lines represents the estimate

ventilation losses. Dotted black lines are ventilation losses

when the leeward window was opened (and possibly also

the windward window), while the full black line represents

moments when only the windward window was opened.
5. Procedures

The observations were split into two sets. The first set was

called the training set and was used to evaluate the proposed

model and estimate model parameters. The second set was

called the test set and was used to evaluate the final perfor-

mance of the model. The test set was not used during the

evaluation and tuning of the model. The training set

comprised all data from November 9th, 2018 at 08:00 to

November 16th at 06:41. The test set consisted of data from

November 16th at 15:00 to November 23rd at 13:40. All data

were averaged so that the sample period was always 20 mins.

Since the material of the walls was identical in both com-

partments, it was assumed that the thermal resistance of all

external walls and roof and the thermal resistance of internal

walls were identical. Therefore, these parameters were

coupled in the estimator by a Lagrange multiplicator. Other

parameters, such as the influence of sun light and the lighting

system may differ in each compartment.
Fig. 4 e Measurements and model predictions for the

training set of the HPS compartment. The grey lines are

respectively the measured and modelled indoor

temperature and the black lines represents the estimate

ventilation losses. Dotted black lines are ventilation losses

when the leeward window was opened (and possibly also

the windward window), while the full black line represents

moments when only the windward window was opened.
6. Results

6.1. Case study

6.1.1. The training set and estimated parameters
Measurements, model and ventilation rates are shown in Figs.

3 and 4. Temperatures vary between 18 and 26 �C, with higher

temperatures during the day and colder periods during night.

The most striking variation was the sudden temperature

drops each evening. The model was well able to follow the

temperature variations. As a measure of the quality of the

model, the ratio between the root-mean-square-error (RMSE)

to the root-mean-square of the observations was used. This is

a measure for that variation that cannot be described by the

model. Values were 1.8 and 2.0% for respectively the LED and

HPS compartments. Overall, the model was able to explain

more than 95% of the variation in temperature.

The ventilation rate was very similar in both compartments.

During the night windows were closed and the ventilation rate

was, evidently, absent. During most of the day ventilation

varied between 0 and 10%.Most evenings, a spike in ventilation

was observed, which coincide with the sharp temperature

drop. These spikes varied between 75 and 300 W m�2.
The estimated parameters are given in Table 2. The heat

capacity of the greenhouse was estimated to be

0.083 kWh m�2 K�1. The overall heat transfer coefficient

doubled when the thermal screens were in use (parameter

decrease from 6.1 to 2.7 W m�2 K�1). Heat exchange with

neighbouring compartments, or the corridor, was charac-

terised by a conduction parameter of 2.0 W m�2 K�1. For the

LED and HPS compartment, respectively 76 and 82% of the

sunlight ends up in the greenhouse as heat.

For the lighting installations, 37% of the electric energy for

the LED systemand 24% for the HPS system eventually ends as

heat in the compartments. These results indicate that LEDs
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Table 2 e Estimated parameters.

Parameter LED
compartment

HPS
compartment

Values found in
Literature

Heat capacity (kWh m�2 K�1) c 0.083

Overall heat transfer coefficient (W m�2 K�1) Screen closed q1 2.7 2.94 (Geelen et al., 2018)

Screen open q2 6.1 7 (Geelen et al., 2018)

Heat exchange with neighbours (W m�2 K�1) q3 2.0 e

Heat absorption of solar radiation (%) q4 76 82 66 (Pieters, 1999),

70e80

(Geelen et al., 2018),

74 (Stanghellini et al., 2019)

Heating system parameter (%) q5 100 100 e

Heat absorption of artificial light (%) q6 37 24 e

Fig. 6 e Measurements and model predictions for the test

set of the HPS compartment. The grey lines are

respectively the measured and modelled indoor

temperature and the black lines represent the estimate

ventilation losses. Dotted black lines are ventilation losses

when the leeward window was opened (and possibly also

the windward window), while the full black line represents

moments when only the windward window was opened.
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are more efficient at transforming electric power into heat

than HPS installations at the location of the measurement

box.

6.1.2. Description of the test set
The observed temperatures, the modelled temperatures and

the ventilation rates of the test set are shown in Figs. 5 and 6.

Temperature ranges were similar to the training set and var-

ied between 18 and 26 �C. The model was able to follow tem-

perature variations, but the model error was obviously more

severe than in the training set. Duringmost days observations

followed predictionswell, but during the third and fourth days

(hours 48 to 96) some severe deviations were observed. The

match was in generally better during day time than at night.

This is probably because the estimation of ventilation rates

allowed the model to follow observations more closely.

Overall, the model still explained over 90% of the variability

seen in the observations. When the test dataset was being

collected, the compartments were less well ventilated, but the

estimated ventilation in both compartments was still similar

(the correlation coefficient between both ventilation rates was

still 90%).Within each compartment the estimated ventilation
Fig. 5 e Measurements and model predictions for the test

set of the LED compartment. The grey lines are respectively

the measured and modelled indoor temperature and the

black lines represent the estimate ventilation losses.

Dotted black lines are ventilation losses when the leeward

window was opened (and possibly also the windward

window), while the full black line represents moments

when only the windward window was opened.
rates were similar to those estimated in the training set: no

windows were opened at night, during day time ventilation

rates varied between 0 and 100 kW m�2 with a peak up to

200 kW m�2 before nightfall.

6.1.3. Estimated heat flows
Table 3 shows the daily averaged heat flows (W m�2). Heat

delivered by the heating installation was the main source of

heat. It was 72.9 W m�2 and was 7.5% greater for the LED

compartment. The difference in heat absorption of sun light

was 2.5 W m�2 or about 8.7% smaller for LED. The overall

amount of heat provided by the lighting systems was similar

in both compartments, although the LED compartment pro-

vided almost 1 Wm�2 more. The main heat sink was losses to

the environment. Since both compartments had very similar

temperatures, identical thermal resistance parameters and

identical surfaces, the heat losses were almost identical. The

small difference of 1.7 W m�2 is due to the slightly lower

temperature of HPS compartment. This average temperature

difference was 0.3 �C. Heat losses to other compartments and

the corridor differs quite a lot: 2.2 W m�2 or over 27%.

https://doi.org/10.1016/j.biosystemseng.2019.12.009
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Fig. 7 e Temperature trends under LED and HPS lamps at

night. The position is relative to the lighting installation

(¡0.5 m is half a metre below the lighting installation,

while ¡4 m is about 1.5 m above the ground, where the

temperature sensor of the climate box was placed.

Table 3 e Overview of the average heat flows.

(W m�2) LED compartment HPS compartment Relative difference w.r.t. LEDs (%)

Heating system 72.9 67.4 7.5

Sun 28.6 31.1 8.7

Lighting 14.8 13.9 6.1

Environment �85.6 �83.9 2.0

Neighbours �8.0 �10.2 27.5

Evaporation �1.0 �1.2 20

Condensation 0.67 0.91 35

Humidity exchange �0.2 �0.2 0

Ventilation �25.6 �21.1 17.6

Remaining heat 3.5 3.3 5.7
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It should be noted that crop growth was less tenuous and

better, and the leaves were bigger in HPS compartment, which

can explain the difference in latent heat. Ventilation losses

were greater for the LED compartment. Not only was the total

amount of losses large, but also the difference in losses be-

tween both compartments was large. Evaporation, condensa-

tion andhumidity exchange during ventilationwere all small in

this experiment, which is not surprising since the plants were

all still small. Overall heat sources and sinks must be in equi-

librium. Therefore, the remaining heat is the amount of heat

needed to evolve from the initial to the final temperature.

6.2. Vertical temperature measurements

It is well known that LED lamps are more efficient than HPS

lamps. However, the parameters estimated here seem to

show the contrary. In Table 2 LEDs convert 37% to heat, whilst

the HPS system converted only 24%, while both produce the

same amount of PAR light. To understand this difference, a

second experiment was performed. Here, both compartments

were equipped with vertical temperature sensors. During

night, both lighting systems were switched on and the

changes in temperature distribution were measured. The

data of this experiment is shown in Fig. 7. The LED

compartment was on the average 1 �Cwarmer. Therefore, the

figure shows the temperature changes relative to midnight.

Once both lighting systems were switched on, temperature

started to increase in all air layers. However, the steady state

temperature under lighting was very different for both sys-

tems. At 4 m below the lighting, where the climate box and

crops were, both lighting systems contributed the same to the

temperature (þ1 �C). Higher p, closer to the lamps, the HPS

lamps heat up the airmore than the LEDs. This differencewas

more pronounced at the height of the lighting installation.

Half a meter below the lighting installations, the LED heats

the air still 1 �C, while the HPS installation increased the

temperature by 3 �C. Once the lighting installations were

switched off the temperatures decreased to an equilibrium

temperature (see Fig. 7).
7. Discussion

Firstly, the ventilation and soil interaction processes are dis-

cussed. This is followed by the most important model pa-

rameters which are compared with literature.
7.1. Ventilation

7.1.1. Noise and model errors
The ventilation rate estimated in this paper was not para-

meterised, so for every additional observation a new ventila-

tion variable was estimated. In other words, the number of

variables to be estimated increased with the number of

measurements when ventilation was present. Therefore,

measurement noise could not be averaged out, as is usually

done in parameter estimation techniques. Consequently,

most measurement noise, and possibly model errors, were

propagated into the ventilation rate. It seems, however, that

themodelmatched the observations quite well, evenwhen no

ventilation was present. So, we might expect that this noise

and error propagation is reasonably small.

7.1.2. Peaks in the ventilation rate
One of the most striking features of the estimated ventilation

were the large peaks that occurred every evening around

sunset. These ventilation peaks were caused by the climate

control settings. During the day, ventilation was usually

caused by opening the leeward windows. However, before

sunset, the leeward windows were closed and the windward
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windows were opened (shown by the full and dotted lines in

the ventilation rates in Figs. 3e6). This caused a large venti-

lation peak, resulting in a replacement of humid internal air

by relatively dry external air. These peaks in ventilation were

therefore deliberately caused by the climate controller.

7.1.3. Interpretation of the ventilation rate
It is difficult to come up with a test to judge the estimated

ventilation rates. De Jong and Bot (1992) proposed a model for

ventilation based on the wind speed and window opening: for

a givenwindow opening, the ventilation ratewas proportional

to the wind speed and for small window openings the venti-

lation rate was proportional to the window opening. For larger

window openings, the ventilation rate saturated. Parra, P�erez,

Baeza andMotero (2004) added a buoyancy term to ventilation

that was proportional to the temperature difference between

inside and outside the greenhouse. Of course, the dynamics of

ventilation will differ, particularly if windows are opened on

the windward or leeward side or in both directions.

Wind direction and orientation with respect to the win-

dows was also taken into account. Hence, to test the accuracy

of the ventilation rate, five features were considered:

- Product of windspeed and window opening

- Windspeed component parallel to the window opening

- Windspeed component perpendicular to the window

opening

- Wind direction

- Temperature difference between inside and outside the

greenhouse.

A multi-linear regression model was used to map the esti-

mated ventilation rate on these features and this for the three

types of ventilation. Results are shown in Table 4. If both win-

dow types were opened, or if only the leeward windows were

opened, the ventilation rate was reasonably well described by

these basic features. When only the windward windows were

opened, no proportional relationship was identified between

estimated ventilation rates and basic features. This does not

necessarily mean that the model failed in this situation; it just

means that the relationship was more complex than can be

discovered by a multilinear regression model.

7.2. Soil interaction

Several models were tested to identify heat exchange with the

soil. In the first model, no heat is exchanged at all, i.e. Q7
t ¼ 0.

In the secondmodel, heat exchange is constant, i.e. Q7
t ¼ q7. In

the third model, heat exchange is proportional to the
Table 4 e Correlation coefficients of multi-linear
regression model.

LED
compartment

HPS
compartment

Both windows are opened 92% 75%

Leeward windows are

opened

58% 59%

Windward windows are

opened

44% 45%
temperature difference between the compartment and the

soil, i.e. Q7
t ¼ q7ðTobs

t � TsoilÞ, with Tsoil ¼ 20 �C. In a fourth

model, the heat exchange is assumed to be period

Q7
t ¼ q9 sinðutþq10Þ, with u ¼ 2p=ð24hÞ. In the latter model, it

was assumed that the periodic heat exchange has a daily

period and that the average heat exchange over a day is zero.

The shape of the heat exchange curve is therefore assumed to

be sinusoidal with unknown amplitude and unknown phase.

It appeared that none of the parameters estimated in any of

these models resulted in a significant heat exchange with the

soil. For that reason, heat exchange with the soil was not

considered in this case study.

7.3. Parameters

7.3.1. Heat capacity
The heat capacity cwas estimated at 0.083 kWhm�2 K�1. This

is about 42 times the heat capacity of the air in the compart-

ment. This means that the estimators did not only take the air

into account, as observed by the climate box, but also the

plants, tables, construction, part of the soil, etc. This heat

capacity also influences the modelled ratio between latent

and sensible heat. Under these circumstances sensible heat is

the much more important.

7.3.2. Overall heat transfer coefficient
The estimated overall heat transfer coefficient, for the

greenhouse without and with screens was 6.1 and

2.7 Wm�2 K�1 respectively. Geelen et al. (2018) noted that “the

energy transfer through a greenhouse cover is always an

combined effect of conductance through the material itself

and convection depending on air temperatures and air

movement on either side of the material”. For an accurate

calculation of the energy flow, all these factors are needed.

However, in practice it is sufficient to use an effective U-value

that applies under “normal conditions”. A typical value is

about 7 W m�2 K�1 (Geelen et al., 2018). The value of

Ugreenhouse ¼6.1Wm�2 K�1 is close to this value, which confirms

that the model applied here matches reasonably well. The

effective U-value of the screen can be computed from the

combined effective U-value of 2.7 W m�2 K�1

(i.e.1=Ucombined ¼ 1=Ugreenhouse þ 1=Uscreen). It’s value is

5.1 W m�2 K�1, which is again in close agreement with a

6 W m�2 K�1 mentioned by Geelen et al. (2018).

7.3.3. Solar radiation
Two distinct parameters were found for the efficiency of the

greenhouse to capture solar radiation. The LED compart-

ment had an efficiency of 76%, while for the HPS compart-

ment had an efficiency of 82%. Pieters (1999) studied the

solar energy input in greenhouses. An interesting rule of

thumb he found is that two third of the solar energy is

captured by the greenhouse. Geelen et al. (2018) estimated

this parameter to be between 70 and 80% and Stanghellini et

al. (2019) estimated this parameter to be 74%. The parame-

ters estimated here agree with these findings. An explana-

tion is that both compartments do not experience the same

shadow from neighbouring compartments. This may

explain the difference in efficiency with respect to solar

radiation.
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7.3.4. Lighting installation
One of the most remarkable results found here is that the

thermal efficiency used by the model is higher for LEDs (37%)

then for HPS lamps (24%), while it generally known that LED

lamps are more efficient than HPS lamps. Firstly, it has to be

noted that this parameter relates the electric power of the

lighting installations with changes in temperaturemeasured at

the climate box. Secondly, both lighting installation were

selected to provide the same amount of PAR light

(180 mmolm�2 s�1). Therefore, a 11,565W LED installation and a

16,512WHPS installationwere used. By applying this efficiency

parameter, these installations produced respectively 4279 and

3962 W heat. Both values are of the same order of magnitude.

To substantiate this result, the temperature was measured at

different positions under the lights. These measurements

confirmed that both lighting installations provided the same

amount of heat at a height of 1.5 m above the ground and

therefore that these efficiencies appear accurate. However, the

results showmore. The HPS installation heats up the top layers

in the greenhouse much more than the LED installation. So, in

fact there is no contradiction. LED lamps are overall more

efficient, but the additional heat that is produced by HPS lamps

does not reach the climate box, nor the plants, but is concen-

trated in the top air layers of the greenhouse. A similar effect

was noticed by Geelen et al. (2018): “Thus, supplemental light in

the form of LED top lights results in a completely different

temperature profile compared to HPS lighting, because the

latter brings much more heat to the top of the plants.” When

the windows were opened, this warm air layer left the green-

house. This model cannot make a distinction between energy

leaving the compartment directly as light or by this pathway.

In the current model, only one state is used to describe the

greenhouse and that is the temperature measured by the

climate box. As Fig. 7 shows, the temperature under the roof

can be several degrees warmer than at the climate box. In the

compartments studied here, this did not have a large impact

on the temperatures observed by the plants or climate box,

but if, for example, fans are used, these higher temperatures

could reach the plants. In such situations, it may be useful in

modelling this scenario to incorporate multiple states. A

consequence is that a single temperature measurement,

without vertical variations may mean that this single state is

not always representative of the complete compartment.

Firstly, plants do not experience the higher temperatures in

the top layers. And secondly, a vast majority of the green-

house is not equipped with vertical temperature sensors.

Therefore, the application range of a data driven model based

on vertical temperatures would be much smaller.
8. Conclusion

A method was proposed to make parameters estimates in

grey-box models convex. This makes the estimator procedure

independent of initial values and robust against local minima

in the optimisation procedure. The method was expanded so

that identical processes in different experiments can be

characterised by the same parameters.

This method was applied on experimental data from a

greenhouse, where two compartments were compared. All
circumstances were kept similar, expect the lighting in-

stallations. One compartment was equipped with HPS lamps,

while the other was equipped with LED lamps.

A particular complication with greenhouse models is

ventilation: a significant amount of heat is lost through

ventilation. Ventilation losses were not measured explicitly,

so this heat sink had to be estimated from temperature

changes too. This process was incorporated well.

Processes that were included conduction losses to the

environment and to neighbouring compartments, latent heat

absorption due to transpiration, heating by the sun, heating by

the heating system(s) and also by the lighting systems. Pa-

rameters found for these common processes were close to

values found in literature. No significant heat losses to the

ground could be identified.

One of the noteworthy outcomes of this experiment was

that the amount of heat produced by both lighting systems,

as is observed by the climate box and plants was identical.

To confirm this result, the vertical temperature distribution

under both lighting systems were measured. It appeared

that the HPS system heated up the upper air layers more

than the LED system. However, a few metres below the

lighting installations both systems provided the same

amount of heat.
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